Effects of 635nm light-emitting diode irradiation on angiogenesis in CoCl(2) -exposed HUVECs

It is recognized that hypoxic/ischemic conditions leading to production of reactive oxygen species (ROS) are an important mediator of angiogenesis in the wound-healing process. Recently, low level light irradiation at 635 nm, which is used in many clinical fields, was found to decrease intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2011-04, Vol.43 (4), p.344-352
Hauptverfasser: Lim, Won Bong, Kim, Ji Sun, Ko, Young Jong, Kwon, HyukIl, Kim, Sang Woo, Min, Heung Kee, Kim, Oksu, Choi, Hong Ran, Kim, Ok Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is recognized that hypoxic/ischemic conditions leading to production of reactive oxygen species (ROS) are an important mediator of angiogenesis in the wound-healing process. Recently, low level light irradiation at 635 nm, which is used in many clinical fields, was found to decrease intracellular ROS levels, and consequently alleviate oxidative stress. The purpose of the present study was to investigate the effects of 635 nm light-emitting diode (LED) irradiation on angiogenesis in human umbilical vein endothelial cells, in an in vitro CoCl(2) -induced severe hypoxia model. The effects were assessed on cell viability, tube formation, hypoxia-inducible factor-1, vascular endothelial growth factor (VEGF), VEGF-1 and -2 protein expression, mitogen-activated protein kinase (MAPK) phosphorylation, and ROS dissociation. The results showed that, under hypoxic/ischemic conditions, irradiation with 635 leads to reduced production and increased scavenging of intracellular ROS, which results in alleviation of VEGFR-1 suppression, enhanced VEGF expression and ERK MAPK activation, and subsequent acceleration of angiogenesis with improved cell viability and tube formation. Taken together, irradiation with 635 nm was shown to reduce intracellular ROS production, which results in increased angiogenesis. Thus, we suggest that irradiation with 635 nm accelerate angiogenesis under hypoxic/ischemic conditions, and may prove to be a useful alternative tool in wound healing.
ISSN:1096-9101
DOI:10.1002/lsm.21038