High-Resolution Field Effect Sensing of Ferroelectric Charges

Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano Lett 2011-04, Vol.11 (4), p.1428-1433
Hauptverfasser: Ko, Hyoungsoo, Ryu, Kyunghee, Park, Hongsik, Park, Chulmin, Jeon, Daeyoung, Kim, Yong Kwan, Jung, Juhwan, Min, Dong-Ki, Kim, Yunseok, Lee, Ho Nyung, Park, Yoondong, Shin, Hyunjung, Hong, Seungbum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 μs. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 μC/cm2, which is equivalent to 1/20 electron per nanometer square at room temperature.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl103372a