Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions
This work compares the performance and emissions from a production 1.0-l, eight-valve, and four-stroke engine fuelled by hydrous ethanol (6.8% water content in ethanol) or 78% gasoline-22% ethanol blend. The engine was tested in a dynamometer bench in compliance with NBR/ISO 1585 standard. The perfo...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2010-02, Vol.89 (2), p.287-293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work compares the performance and emissions from a production 1.0-l, eight-valve, and four-stroke engine fuelled by hydrous ethanol (6.8% water content in ethanol) or 78% gasoline-22% ethanol blend. The engine was tested in a dynamometer bench in compliance with NBR/ISO 1585 standard. The performance parameters investigated were torque, brake mean effective pressure (BMEP), brake power, specific fuel consumption (SFC), and thermal efficiency. Carbon monoxide (CO), carbon dioxide (CO
2), hydrocarbons (HC) and oxides of nitrogen (NO
X
) exhaust emissions levels are also presented. The results showed that torque and BMEP were higher when the gasoline-ethanol blend was used as fuel on low engine speeds. On the other hand, for high engine speeds, higher torque and BMEP were achieved when hydrous ethanol fuel was used. The use of hydrous ethanol caused higher power at high engine speeds, whereas, for low engine speeds, both fuels produced about the same power. Hydrous ethanol produced higher thermal efficiency and higher SFC than the gasoline-ethanol blend throughout all the engine speed range studied. With regard to exhaust emissions hydrous ethanol reduced CO and HC, but increased CO
2 and NO
X
levels. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2009.06.017 |