A neurodynamical model for working memory
Neurodynamical models of working memory (WM) should provide mechanisms for storing, maintaining, retrieving, and deleting information. Many models address only a subset of these aspects. Here we present a rather simple WM model in which all of these performance modes are trained into a recurrent neu...
Gespeichert in:
Veröffentlicht in: | Neural networks 2011-03, Vol.24 (2), p.199-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodynamical models of working memory (WM) should provide mechanisms for storing, maintaining, retrieving, and deleting information. Many models address only a subset of these aspects. Here we present a rather simple WM model in which all of these performance modes are trained into a recurrent neural network (RNN) of the echo state network (ESN) type. The model is demonstrated on a bracket level parsing task with a stream of rich and noisy graphical script input. In terms of nonlinear dynamics, memory states correspond, intuitively, to attractors in an input-driven system. As a supplementary contribution, the article proposes a rigorous formal framework to describe such attractors, generalizing from the standard definition of attractors in autonomous (input-free) dynamical systems. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2010.10.003 |