Range-Spread Target Detection using Consecutive HRRPs

In this paper, a heuristic detector is proposed to detect range-spread targets in white Gaussian noise using multiple consecutive high- resolution range profiles (HRRPs) received from a high-resolution radar (HRR). The detector consists of refiners of HRRPs and a cross-correlation integrator of refi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2011-01, Vol.47 (1), p.647-665
Hauptverfasser: Shui, Peng-Lang, Xu, Shu-Wen, Liu, Hong-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a heuristic detector is proposed to detect range-spread targets in white Gaussian noise using multiple consecutive high- resolution range profiles (HRRPs) received from a high-resolution radar (HRR). The detector consists of refiners of HRRPs and a cross-correlation integrator of refined HRRPs. Based on the fact that strong scattering cells are sparse in target HRRPs, nonlinear shrinkage maps are designed to refine received HRRPs before integration, by which most of the noise-only cells in received HRRPs are suppressed while strong scattering cells most probably relevant to target signature are preserved. Since the target's scattering geometry is almost unchanged except for range walking during integration, the refined target HRRPs from consecutive pulses are highly similar while refined noise-only HRRPs are dissimilar due to randomicity. The modified correlation matrix of multiple refined HRRPs is used to measure their similarity. The test statistic, a weighted integration of the entries of the modified correlation matrix, is constructed for target detection. The proposed detector does not depend on a strict target return model and can work in mild conditions. The real target data and simulated noise are used to evaluate the detector, and the experimental results show that it achieves better detection performance than some existing methods.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2011.5705697