A dedekind finite borel set

In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if is a G δσ -set then either B is countable or B contains a perfect subset. Second, we prove that if 2 ω is the countable union of countable sets, then there e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2011-02, Vol.50 (1-2), p.1-17
1. Verfasser: Miller, Arnold W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if is a G δσ -set then either B is countable or B contains a perfect subset. Second, we prove that if 2 ω is the countable union of countable sets, then there exists an F σδ set such that C is uncountable but contains no perfect subset. Finally, we construct a model of ZF in which we have an infinite Dedekind finite which is F σδ .
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-010-0195-6