Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors
In order to outperform current uniaxial compressively strained Silicon channel pMOSFET technology (with embedded SiGe source/drain), switching to strained Ge channel is mandatory. GeSn materials, having larger lattice parameter than Ge, are proposed in this article as embedded source/drain stressors...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2011-04, Vol.88 (4), p.342-346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to outperform current uniaxial compressively strained Silicon channel pMOSFET technology (with embedded SiGe source/drain), switching to strained Ge channel is mandatory. GeSn materials, having larger lattice parameter than Ge, are proposed in this article as embedded source/drain stressors for Ge channels. Our simulation results indicate that a minimum of 5% Sn is required in the GeSn source/drain to build a competitive strained Ge pMOSFETs with respect to strained Si channels. Therefore the compatibility of GeSn (with 2–8% Sn) materials with source/drain engineering processes (B implantation and activation and NiGeSn formation) has been studied. A low thermal budget has been determined for those processes on GeSn alloys: temperatures must be lower than 600
°C for B activation and lower than 450
°C for NiGeSn formation. |
---|---|
ISSN: | 0167-9317 1873-5568 |
DOI: | 10.1016/j.mee.2010.10.025 |