Nonlinear dynamics in the initial-boundary value problem on the fluid flow from a ledge for the hydrodynamic approximation to the boltzmann equations
We numerically analyze the laminar-turbulent transition in the problem on the flow of a viscous incompressible fluid from a ledge. To model the fluid flow, we use the Boltzmann integro-differential equations expanded in the Knudsen number. For the fundamental analysis, we use a numerical method of i...
Gespeichert in:
Veröffentlicht in: | Differential equations 2010-12, Vol.46 (12), p.1794-1798 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We numerically analyze the laminar-turbulent transition in the problem on the flow of a viscous incompressible fluid from a ledge. To model the fluid flow, we use the Boltzmann integro-differential equations expanded in the Knudsen number. For the fundamental analysis, we use a numerical method of increased accuracy for the integration of the initial-boundary value problem. By analyzing the phase portraits of the behavior of the system, we find that the transition from a stationary solution to an irregular chaotic one takes place in accordance with the Feigenbaum-Sharkovskii-Magnitskii scenario. Moreover, the transition process differs from the results obtained by using the Navier-Stokes equations for solving a similar initial-boundary value problem. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S001226611012013X |