Nonlinear dynamics in the initial-boundary value problem on the fluid flow from a ledge for the hydrodynamic approximation to the boltzmann equations

We numerically analyze the laminar-turbulent transition in the problem on the flow of a viscous incompressible fluid from a ledge. To model the fluid flow, we use the Boltzmann integro-differential equations expanded in the Knudsen number. For the fundamental analysis, we use a numerical method of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2010-12, Vol.46 (12), p.1794-1798
Hauptverfasser: Evstigneev, N. M., Magnitskii, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We numerically analyze the laminar-turbulent transition in the problem on the flow of a viscous incompressible fluid from a ledge. To model the fluid flow, we use the Boltzmann integro-differential equations expanded in the Knudsen number. For the fundamental analysis, we use a numerical method of increased accuracy for the integration of the initial-boundary value problem. By analyzing the phase portraits of the behavior of the system, we find that the transition from a stationary solution to an irregular chaotic one takes place in accordance with the Feigenbaum-Sharkovskii-Magnitskii scenario. Moreover, the transition process differs from the results obtained by using the Navier-Stokes equations for solving a similar initial-boundary value problem.
ISSN:0012-2661
1608-3083
DOI:10.1134/S001226611012013X