Realization of the Perron effect whereby the characteristic exponents of solutions of differential systems change their values
We realize the Perron effect of change of values of characteristic exponents: for arbitrary parameters λ 1 1, we prove the existence of a linear differential system = A ( t ) x , x ∈ R 2 , t ≥ t 0 , with bounded infinitely differentiable coefficients and with characteristic exponents λ 1 ( A ) = λ...
Gespeichert in:
Veröffentlicht in: | Differential equations 2010-11, Vol.46 (11), p.1537-1551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We realize the Perron effect of change of values of characteristic exponents: for arbitrary parameters
λ
1
1, we prove the existence of a linear differential system
=
A
(
t
)
x
,
x
∈
R
2
,
t
≥
t
0
, with bounded infinitely differentiable coefficients and with characteristic exponents
λ
1
(
A
) =
λ
1
1), satisfying the condition ‖
f
(
t, y
)‖ ≤ const × ‖
y
‖
m
,
y
∈
R
2
,
t
≥
t
0
, and such that all nontrivial solutions
y
(
t, c
) of the perturbed system
, have Lyapunov exponents
λ
[
y
(·,
c
)] =
β
1
for
c
1
= 0 and
λ
[
y
(·,
c
)] =
β
2
for
c
1
≠ 0.
In particular, this effect contains the Perron effect whereby the characteristic exponents of an exponentially stable linear differential system change their sign under perturbations of higher-order smallness. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266110110029 |