Monge–Ampère equations in big cohomology classes

We define non-pluripolar products of an arbitrary number of closed positive (1, 1)-currents on a compact Kähler manifold X . Given a big (1, 1)-cohomology class α on X (i.e. a class that can be represented by a strictly positive current) and a positive measure μ on X of total mass equal to the volum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica 2010-12, Vol.205 (2), p.199-262
Hauptverfasser: Boucksom, Sébastien, Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define non-pluripolar products of an arbitrary number of closed positive (1, 1)-currents on a compact Kähler manifold X . Given a big (1, 1)-cohomology class α on X (i.e. a class that can be represented by a strictly positive current) and a positive measure μ on X of total mass equal to the volume of α and putting no mass on pluripolar sets, we show that μ can be written in a unique way as the top-degree self-intersection in the non-pluripolar sense of a closed positive current in α . We then extend Kolodziedj’s approach to sup-norm estimates to show that the solution has minimal singularities in the sense of Demailly if μ has L 1+ ε -density with respect to Lebesgue measure. If μ is smooth and positive everywhere, we prove that T is smooth on the ample locus of α provided α is nef. Using a fixed point theorem, we finally explain how to construct singular Kähler–Einstein volume forms with minimal singularities on varieties of general type.
ISSN:0001-5962
1871-2509
DOI:10.1007/s11511-010-0054-7