Typical peak sidelobe level of binary sequences

For a binary sequence Sn = { si : i =1,2,..., n } ∈ {±1} n , n > 1, the peak sidelobe level (PSL) is defined as M(S n )=max k=1,2,...,n-1 |∑ i=1 n-k S i S i +k|. It is shown that the distribution of M ( Sn ) is strongly concentrated, and asymptotically almost surely γ(S n ) = (M(S n ))/√(n In n)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-01, Vol.56 (1), p.545-554
Hauptverfasser: Alon, N., Litsyn, S., Shpunt, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a binary sequence Sn = { si : i =1,2,..., n } ∈ {±1} n , n > 1, the peak sidelobe level (PSL) is defined as M(S n )=max k=1,2,...,n-1 |∑ i=1 n-k S i S i +k|. It is shown that the distribution of M ( Sn ) is strongly concentrated, and asymptotically almost surely γ(S n ) = (M(S n ))/√(n In n) ∈ [1-o(1),√2]. Explicit bounds for the number of sequences outside this range are provided. This improves on the best earlier known result due to Moon and Moser that the typical γ( Sn ) ∈ [o([1/(√(ln n))]),2], and settles to the affirmative the conjecture of Dmitriev and Jedwab on the growth rate of the typical peak sidelobe. Finally, it is shown that modulo some natural conjecture, the typical γ( Sn ) equals √2 .
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2034803