Signal regularity-based automated seizure detection system for scalp EEG monitoring

The purpose of the present study was to build a clinically useful automated seizure detection system for scalp EEG recordings. To achieve this, a computer algorithm was designed to translate complex multichannel scalp EEG signals into several dynamical descriptors, followed by the investigations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2010-11, Vol.46 (6), p.922-935
Hauptverfasser: Shiau, Deng-Shan, Halford, J. J., Kelly, K. M., Kern, R. T., Inman, M., Chien, Jui-Hong, Pardalos, P. M., Yang, M. C. K., Sackellares, J. Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of the present study was to build a clinically useful automated seizure detection system for scalp EEG recordings. To achieve this, a computer algorithm was designed to translate complex multichannel scalp EEG signals into several dynamical descriptors, followed by the investigations of their spatiotemporal properties that relate to the ictal (seizure) EEG patterns as well as to normal physiologic and artifact signals. This paper describes in detail this novel seizure detection algorithm and reports its performance in a large clinical dataset.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-010-9273-3