Mammographic Mass Detection using Wavelets as Input to Neural Networks

The objective of this paper is to demonstrate the utility of artificial neural networks, in combination with wavelet transforms for the detection of mammogram masses as malign or benign. A total of 45 patients who had breast masses in their mammography were enrolled in the study. The neural network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems 2010-12, Vol.34 (6), p.1083-1088
Hauptverfasser: Kilic, Niyazi, Gorgel, Pelin, Ucan, Osman N., Sertbas, Ahmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this paper is to demonstrate the utility of artificial neural networks, in combination with wavelet transforms for the detection of mammogram masses as malign or benign. A total of 45 patients who had breast masses in their mammography were enrolled in the study. The neural network was trained on the wavelet based feature vectors extracted from the mammogram masses for both benign and malign data. Therefore, in this study, Multilayer ANN was trained with the Backpropagation, Conjugate Gradient and Levenberg–Marquardt algorithms and ten-fold cross validation procedure was used. A satisfying sensitivity percentage of 89.2% was achieved with Levenberg–Marquardt algorithm. Since, this algorithm combines the best features of the Gauss–Newton technique and the other steepest-descent algorithms and thus it reaches desired results very fast.
ISSN:0148-5598
1573-689X
DOI:10.1007/s10916-009-9326-1