Dietary zinc mediates inflammation and protects against wasting and metabolic derangement caused by sustained cigarette smoke exposure in mice

In mouse asthma models, inflammation can be modulated by zinc (Zn). Given that appetite loss, muscle wasting and poor nutrition are features of chronic obstructive pulmonary disease (COPD) and that poor dietary Zn intake is in itself accompanied by growth retardation and appetite loss, we hypothesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2011-02, Vol.24 (1), p.23-39
Hauptverfasser: Lang, Carol J., Hansen, Michelle, Roscioli, Eugene, Jones, Jessica, Murgia, Chiara, Leigh Ackland, Margaret, Zalewski, Peter, Anderson, Gary, Ruffin, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In mouse asthma models, inflammation can be modulated by zinc (Zn). Given that appetite loss, muscle wasting and poor nutrition are features of chronic obstructive pulmonary disease (COPD) and that poor dietary Zn intake is in itself accompanied by growth retardation and appetite loss, we hypothesised that dietary Zn limitation would not only worsen airway inflammation but also exaggerate metabolic effects of cigarette smoke (CS) exposure in mice. Conversely, Zn supplementation would lessen inflammation. Mice were exposed to CS [2× 2RF, 3×/day; 15 min/cigarette] and fed diets containing 2, 20 or 140 mg/kg Zn ad libitum. Airway cells were collected by bronchoalveolar lavage (BAL). Plasma Zn was measured by fluorometric assay. Inflammatory, metabolic and Zn transport markers were measured by real-time RT-PCR. Mice fed low Zn diets had less plasma labile zinc (0–0.18 μM) than mice fed moderate (0.61–0.98 μM) or high (0.77–1.1 μM) Zn diets (SDs 0.1–0.4, n = 8–10). Smoke exposure increased plasma and BAL labile Zn (1.5–2.5 fold, P  
ISSN:0966-0844
1572-8773
DOI:10.1007/s10534-010-9370-9