Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach

In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2010-10, Vol.26 (5), p.755-765
Hauptverfasser: Lim, C. W., Li, C., Yu, Ji-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-010-0374-z