Numerical model and flume experiments of single- and two-layered hillslope flow related to slope failure
A hillslope flow model is developed considering 3D saturated and unsaturated flow of water during rainfall events. A finite difference-based numerical model of hillslope flow processes is developed. Four different experiments are done to see the effects of a single- and double-layered soil in pore-w...
Gespeichert in:
Veröffentlicht in: | Landslides 2010-12, Vol.7 (4), p.425-432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hillslope flow model is developed considering 3D saturated and unsaturated flow of water during rainfall events. A finite difference-based numerical model of hillslope flow processes is developed. Four different experiments are done to see the effects of a single- and double-layered soil in pore-water pressure dynamics and slope failure. Results from the numerical model are verified with experimental results. The numerical and experimental values of the pore-water pressure and moisture contents are in good agreement. The results show that the hillslope heterogeneity caused by multiple layers of soil has greater influence on hillslope pore-pressure dynamics and slope failure patterns. The depth of slope failure shows high dependency on layering characteristics of the soil slope and pattern of rainfall. The proposed model provides a perspective on failure mechanism of a single- or double-layered slope under rainfall infiltration. |
---|---|
ISSN: | 1612-510X 1612-5118 |
DOI: | 10.1007/s10346-010-0205-0 |