Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents

The propagation characteristics of fluid mud turbidity currents were investigated experimentally and theoretically. Parameterizations for propagation phase transition times from slumping to self-similar and self-similar to viscous phases are proposed. Predictive capabilities of different mathematica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2011, Vol.38 (1), p.256-270
Hauptverfasser: Chowdhury, M.R., Testik, F.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The propagation characteristics of fluid mud turbidity currents were investigated experimentally and theoretically. Parameterizations for propagation phase transition times from slumping to self-similar and self-similar to viscous phases are proposed. Predictive capabilities of different mathematical models that fall into three different modeling approaches (force-balance, box, shallow water) were evaluated for fluid mud turbidity current propagation using our experimental observations. For the slumping and self-similar phases, the box and force-balance models showed superior predictive capabilities than the one-layer shallow water models with deep ambient condition. Fluid mud turbidity currents have a non-Newtonian rheology and their transition and propagation characteristics in the viscous phase differ vastly from the Newtonian currents. We derived and presented a viscous force-balance expression for the propagation of a non-Newtonian power-law fluid current. We then experimentally evaluated the predictive capability of this force-balance and the viscous shallow water model by Di Federico et al. (2006). Both models' predictions are observed to be in notably good agreement with the experimental data. The results of this study are expected to be useful for preliminary swift calculations of the fluid mud turbidity current propagation characteristics as well as in deciding whether more detailed calculations at the expense of complexity are required.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2010.10.020