Sorption of carbamazepine, 17α-ethinylestradiol, iopromide and trimethoprim to biomass involves interactions with exocellular polymeric substances

The sorption of carbamazepine (CBZ), iopromide (IOP), trimethoprim (TMP) and 17α-ethinylestradiol (EE2) was evaluated using four biomass types (pure ammonia oxidizing bacterial culture, two heterotrophic enrichment cultures with varying levels of oxygenase activity, and a full-scale nitrifying activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2011-02, Vol.82 (6), p.917-922
Hauptverfasser: Khunjar, Wendell O., Love, Nancy G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sorption of carbamazepine (CBZ), iopromide (IOP), trimethoprim (TMP) and 17α-ethinylestradiol (EE2) was evaluated using four biomass types (pure ammonia oxidizing bacterial culture, two heterotrophic enrichment cultures with varying levels of oxygenase activity, and a full-scale nitrifying activated sludge (NAS) culture). CBZ and IOP did not sorb to the four biomass types. EE2 did not sorb to the pure culture but sorbed significantly to the heterotrophic cultures and NAS. TMP sorbed to the heterotrophic cultures and NAS, and was not evaluated for the pure culture. Three floc characteristics (hydrophobicity, median particle size, organic matter content) correlated moderately well with the EE2 organic matter sorption coefficient ( K OM,EE2). Zeta potential did not correlate well with K OM,EE2 but did with K OM,TMP, indicating that TMP sorption is more influenced by electrostatic factors than EE2. Once divalent cation-linked exocellular polymeric substances (EPS) were removed from flocs, EE2 and TMP sorption to the non-EPS (cellular) fraction decreased by approximately 50%. The correlation between K OM,EE2 for the non-EPS cellular fraction deteriorated while the correlation between K OM,TMP improved. EE2 seemed to sorb more strongly to EPS protein whereas TMP sorbed equally to polysaccharide and protein EPS. Attempts to develop predictive models were not successful. Pharmaceuticals that sorbed to biomass samples underwent biodegradation whereas those that did not sorb were not biodegraded, suggesting a relationship between sorption and pharmaceutical biotransformation.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2010.10.046