Nonlinear stability of the equilibria in a double-bar rotating system

We study the nonlinear stability of the equilibria corresponding to the motion of a particle orbiting around a two finite orthogonal straight segment. The potential is a logarithmic function and may be considered as an approximation to the one generated by irregular celestial bodies. Using Arnold’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2011-02, Vol.235 (7), p.1819-1825
Hauptverfasser: Guirao, Juan L.G., Rubio, Raquel G., Vera, Juan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the nonlinear stability of the equilibria corresponding to the motion of a particle orbiting around a two finite orthogonal straight segment. The potential is a logarithmic function and may be considered as an approximation to the one generated by irregular celestial bodies. Using Arnold’s theorem for non-definite quadratic forms we determine the nonlinear stability of the equilibria, for all values of the parameter of the problem. Moreover, the resonant cases are determined and the stability is investigated.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2010.05.019