A variable precision rough set approach to the remote sensing land use/cover classification

Nowadays the rough set method is receiving increasing attention in remote sensing classification although one of the major drawbacks of the method is that it is too sensitive to the spectral confusion between-class and spectral variation within-class. In this paper, a novel remote sensing classifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2010-12, Vol.36 (12), p.1466-1473
Hauptverfasser: Pan, Xin, Zhang, Shuqing, Zhang, Huaiqing, Na, Xiaodong, Li, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays the rough set method is receiving increasing attention in remote sensing classification although one of the major drawbacks of the method is that it is too sensitive to the spectral confusion between-class and spectral variation within-class. In this paper, a novel remote sensing classification approach based on variable precision rough sets (VPRS) is proposed by relaxing subset operators through the inclusion error β. The remote sensing classification algorithm based on VPRS includes three steps: (1) spectral and textural information (or other input data) discretization, (2) feature selection, and (3) classification rule extraction. The new method proposed here is tested with Landsat-5 TM data. The experiment shows that admitting various inclusion errors β, can improve classification performance including feature selection and generalization ability. The inclusion of β also prevents the overfitting to the training data. With the inclusion of β, higher classification accuracy is obtained. When β=0 (i.e., the original rough set based classifier), overfitting to the training data occurs, with the overall accuracy=0.6778 and unrecognizable percentage=12%. When β=0.07, the highest classification performance is reached with overall accuracy and unrecognizable percentage up to 0.8873% and 2.6%, respectively.
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2009.11.010