An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing

In order to obtain an ultra-sensitive molecular biosensor, we designed an auto-biotinylated bifunctional protein nanowire (bFPNw) based on the self-assembly of a yeast amyloid protein, Sup35, to which protein G and a biotin acceptor peptide (BAP) were genetically fused. These auto-biotinylated bFPNw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2010-12, Vol.26 (4), p.1137-1141
Hauptverfasser: Men, Dong, Zhang, Zhi-Ping, Guo, Yong-Chao, Zhu, Duan-Hao, Bi, Li-Jun, Deng, Jiao-Yu, Cui, Zong-Qiang, Wei, Hong-Ping, Zhang, Xian-En
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to obtain an ultra-sensitive molecular biosensor, we designed an auto-biotinylated bifunctional protein nanowire (bFPNw) based on the self-assembly of a yeast amyloid protein, Sup35, to which protein G and a biotin acceptor peptide (BAP) were genetically fused. These auto-biotinylated bFPNws can transfer hundreds of commercially available diagnostic enzymes to an antigen–antibody complex via the biotin–avidin system, greatly enhancing the sensitivity of immune-biosensing. Compared to our previously reported seeding-induced bFPNws ( Men et al., 2009), these auto-biotinylated bFPNws gave greater signal amplification, reduced non-specific binding and improved stability. The auto-biotinylated self-assembled bFPNw molecular biosensors were applied to detect Yersinia pestis ( Y. pestis) F1 antigen and showed a 2000- to 4000-fold increase in sensitivity compared to traditional immunoassays, demonstrating the potential use of these self-assembling protein nanowires in biosensing.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2010.07.103