Empirical likelihood block bootstrapping

Monte Carlo evidence has made it clear that asymptotic tests based on generalized method of moments (GMM) estimation have disappointing size. The problem is exacerbated when the moment conditions are serially correlated. Several block bootstrap techniques have been proposed to correct the problem, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2011-04, Vol.161 (2), p.110-121
Hauptverfasser: Allen, Jason, Gregory, Allan W., Shimotsu, Katsumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monte Carlo evidence has made it clear that asymptotic tests based on generalized method of moments (GMM) estimation have disappointing size. The problem is exacerbated when the moment conditions are serially correlated. Several block bootstrap techniques have been proposed to correct the problem, including Hall and Horowitz (1996) and Inoue and Shintani (2006). We propose an empirical likelihood block bootstrap procedure to improve inference where models are characterized by nonlinear moment conditions that are serially correlated of possibly infinite order. Combining the ideas of Kitamura (1997) and Brown and Newey (2002), the parameters of a model are initially estimated by GMM which are then used to compute the empirical likelihood probability weights of the blocks of moment conditions. The probability weights serve as the multinomial distribution used in resampling. The first-order asymptotic validity of the proposed procedure is proven, and a series of Monte Carlo experiments show it may improve test sizes over conventional block bootstrapping.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2010.10.003