Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters

Interindividual variability in the response to drug therapy is due, in part, to genetic mechanisms which influence the expression of genes involved with drug metabolism and transport. Genetic elements and processes such as DNA methylation, histone deacetylation, transcription factors, DNA sequence v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Mechanisms of disease 2011-05, Vol.3 (3), p.299-313
Hauptverfasser: Glubb, Dylan M., Innocenti, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interindividual variability in the response to drug therapy is due, in part, to genetic mechanisms which influence the expression of genes involved with drug metabolism and transport. Genetic elements and processes such as DNA methylation, histone deacetylation, transcription factors, DNA sequence variants, and microRNAs (miRNAs) can impact at either the transcriptional or translational levels to modulate gene expression. Identification of such genetic regulators has greatly advanced in the last decade. Genome‐wide analyses, using different types of approaches and methodologies, have uncovered many potential regulators of the expression of drug metabolizing enzymes and transporters. However, confirming the function of these putative regulators is necessary and requires further work in the laboratory, using techniques which are still evolving. It also still remains to be seen whether these findings have clinical implications for drug therapy but the realization of personalized medicine is a possible consequence of this research. WIREs Syst Biol Med 2011 3 299–313 DOI: 10.1002/wsbm.125 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Metabolism
ISSN:1939-5094
1939-005X
2692-9368
DOI:10.1002/wsbm.125