Developmental expression of sorting nexin 3 in the mouse central nervous system

We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene Expression Patterns 2011-01, Vol.11 (1-2), p.33-40
Hauptverfasser: Mizutani, Reiko, Nakamura, Kazuaki, Yokoyama, Shigetoshi, Sanbe, Atsushi, Kusakawa, Shinji, Miyamoto, Yuki, Torii, Tomohiro, Asahara, Hiroshi, Okado, Haruo, Yamauchi, Junji, Tanoue, Akito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation, demonstrating that SNX3 plays an important role in the genesis of these organs during development. The present study was designed to determine the expression pattern of snx3 mRNA, particularly in the mouse central nervous system (CNS), from the embryonic stage to adulthood. Whole mount in situ hybridization of embryonic day (E) 9.5 and 10.5 mouse embryos revealed strong positive signals for snx3 mRNA in the forebrain, pharyngeal arches, eyes, and limb buds. In situ hybridization analyses of embryonic and neonatal brain sections revealed that snx3 mRNA is mainly expressed in the cerebral cortex, hippocampus, piriform cortex, cerebellum, and spinal cord. In adulthood, the expression of snx3 mRNA is observed in the cerebral cortex, hippocampus, piriform cortex, and cerebellar neurons. Thus, snx3 mRNA is expressed during neural development and in adult neural tissues, suggesting that SNX3 may play an important role in the development and function of the CNS.
ISSN:1567-133X
1872-7298
DOI:10.1016/j.gep.2010.08.007