Age, Trace Elements and Hf-Isotope CompOsition of Zircon in Eclogites from the Sulu UHP Belt, East-Central China: Neoproterozoic Intrusion and Subsequent Paleozoic and Early Mesozoic Metamorphism

The Sulu (苏鲁)-Dabie (大别) orogen in East-Central China formed during the subduction and collision of the Yangtze block with the North China block in Early Mesozoic (240-225 Ma). Constraints on the nature and derivation of eclogites, which are a significant component of the orogen, can provide useful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of earth science (Wuhan, China) China), 2010-10, Vol.21 (5), p.598-622
1. Verfasser: 郑建平 汤华云 赵军红 苏玉平 余淳梅 魏启荣 刘庆生 吴秀玲
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Sulu (苏鲁)-Dabie (大别) orogen in East-Central China formed during the subduction and collision of the Yangtze block with the North China block in Early Mesozoic (240-225 Ma). Constraints on the nature and derivation of eclogites, which are a significant component of the orogen, can provide useful information about subduction-zone metamorphism and crust-mantle interaction. The U-Pb ages, Hf-isotope ratios and trace-element compositions of zircons in eclogites from the Jiangzhuang (蒋庄) (Jiangsu (江苏) Province) and Rongcheng (荣成) (Shandong (山东) Province) areas indicate that the protoliths of the eclogites derived from ultramafic-mafic complexes or mafic intrusion in the subducted continental lithosphere. The upper intercept age of 852±10 Ma and high tHf (up to 14.7) of the Neoproterozoic zircons in a Jiangzhuang sample indicate that the protoliths represent products of the Neoproterozoic addition of juvenile materials to the older (i.e., Paleo-Mesoproterozoic) continental crust. The zircon ages of eclogites from both localities mainly record the Triassic (230-220 Ma) metamorphism, consistent with the formation of the Sulu orogen in Early Mesozoic. The lower intercept age of 316±4 Ma in a Jiangzhuang sample suggests that thermal activity relating to the paleo- Tethyan in Late Carboniferous also affected the eclogitic protolith.
ISSN:1674-487X
1867-111X
DOI:10.1007/s12583-010-0122-0