Performance of chloroperoxidase stabilization in mesoporous sol-gel glass using in situ glucose oxidase peroxide generation
A unique mesoporous sol-gel glass possessing a highly ordered porous structure (with three pore sizes of about 50, 150, and 200 A diameter) was used as a support material for immobilization of the enzyme chloroperoxidase (CPO). CPO was bound onto the glass via a bifunctional ligand, trimethoxysilylp...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2004, Vol.113-116 (1-3), p.273-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A unique mesoporous sol-gel glass possessing a highly ordered porous structure (with three pore sizes of about 50, 150, and 200 A diameter) was used as a support material for immobilization of the enzyme chloroperoxidase (CPO). CPO was bound onto the glass via a bifunctional ligand, trimethoxysilylpropanal. In situ production of the cosubstrate, H2O2, was achieved using glucose oxidase. Solvent stability in acetonitrile mixtures was enhanced when a pore size larger than the size of CPO was used (i.e., 200 A). From these results, it appears that the glass-enzyme complex developed through the present work can be used as high-performance biocatalysts for various chemical-processing applications, particularly in harsh conditions. |
---|---|
ISSN: | 0273-2289 0273-2289 1559-0291 |
DOI: | 10.1385/ABAB:113:1-3:273 |