Continuous countercurrent extraction of hemicellulose from pretreated wood residues

Two-stage dilute acid pretreatment followed by enzymatic cellulose hydrolysis is an effective method for obtaining high sugar yields from wood residues such as softwood forest thinnings. In the first-stage hydrolysis step, most of the hemicellulose is solubilized using relatively mild conditions. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2001, Vol.91 (1-9), p.253-267
Hauptverfasser: Kim, K.H, Tucker, M.P, Keller, F.A, Aden, A, Nguyen, Q.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-stage dilute acid pretreatment followed by enzymatic cellulose hydrolysis is an effective method for obtaining high sugar yields from wood residues such as softwood forest thinnings. In the first-stage hydrolysis step, most of the hemicellulose is solubilized using relatively mild conditions. The soluble hemicellulosic sugars are recovered from the hydrolysate slurry by washing with water. The washed solids are then subjected to more severe hydrolysis conditions to hydrolyze approx 50% of the cellulose to glucose. The remaining cellulose can further be hydrolyzed with cellulase enzyme. Our process simulation indicates that the amount of water used in the hemicellulose recovery step has a significant impact on the cost of ethanol production. It is important to keep water usage as low as possible while maintaining relatively high recovery of soluble sugars. To achieve this objective, a prototype pilot-scale continuous countercurrent screw extractor was evaluated for the recovery of hemicellulose from pretreated forest thinnings. Using the 274-cm (9-ft) long extractor, solubles recoveries of 98, 91, and 77% were obtained with liquid-to-insoluble solids (L/IS) ratios of 5.6, 3.4, and 2.1, respectively. An empirical equation was developed to predict the performance of the screw extractor. This equation predicts that soluble sugar recovery above 95% can be obtained with an L/IS ratio as low as 3.0.
ISSN:0273-2289
1559-0291
0273-2289
DOI:10.1385/ABAB:91-93:1-9:253