Radiometer and Profiler Analysis of the Effects of a Bore and a Solitary Wave on the Stability of the Nocturnal Boundary Layer
This study uses data from a microwave profiling radiometer (MPR), along with 915-MHz wind profiler, Doppler radar, and surface data to quantify the kinematic and thermodynamic effects of two wave features, an undular bore and a soliton, on the nocturnal boundary layer (NBL) at high temporal resoluti...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2011, Vol.139 (1), p.211-223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study uses data from a microwave profiling radiometer (MPR), along with 915-MHz wind profiler, Doppler radar, and surface data to quantify the kinematic and thermodynamic effects of two wave features, an undular bore and a soliton, on the nocturnal boundary layer (NBL) at high temporal resolution. Both wave features passed directly over the MPR and the wind profiler, allowing for detailed analyses. The effects of the wave features on the convective environment are examined, and convective initiation (CI) associated with the wave features is discussed.
The undular bore was illustrated well in Doppler velocity data, and profiler measurements indicated that it produced four wavelengths of upward and downward motion. MPR-derived time–height sections of potential temperature and mixing ratio showed an increase in the depth of the stable boundary layer, along with a decrease in stability, partially associated with mixing of the NBL. The soliton produced a temporary decrease in the depth of the NBL, and also produced destabilization. Trajectory analyses were performed assuming the wave features were two-dimensional, allowing a time-to-space conversion of profiler data. Trajectory analyses, in addition to propagation speed, confirm that the wave features were indeed a bore and a soliton, and that there was vertical divergence in the NBL, likely associated with the decrease in static stability.
MPR data were also used to produce time series of convective parameters, including CAPE, convective inhibition (CIN), and the level of free convection (LFC). The CIN was initially too large for free convection despite sufficient CAPE, but MPR data showed that the CIN decreased by more than 50% upon passage of the bore, and again with the soliton. The waves also decreased the LFC due to cooling above the NBL and slight warming near the surface in the bore. Both the reduction in CIN and the lowering of the LFC made convection more likely. Convective initiation occurred behind both wave features, and the vertical motion provided by the waves may have also aided in this CI. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/2010MWR3376.1 |