Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC
Natural organic matter (NOM) in water samples from a drinking water treatment train was characterized using fluorescence excitation emission matrices (F-EEMs) and parallel factor analysis (PARAFAC). A seven component PARAFAC model was developed and validated using 147 F-EEMs of water samples from tw...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2011-01, Vol.45 (2), p.797-809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural organic matter (NOM) in water samples from a drinking water treatment train was characterized using fluorescence excitation emission matrices (F-EEMs) and parallel factor analysis (PARAFAC). A seven component PARAFAC model was developed and validated using 147 F-EEMs of water samples from two full-scale water treatment plants. It was found that the fluorescent components have spectral features similar to those previously extracted from F-EEMs of dissolved organic matter (DOM) from diverse aquatic environments. Five of these components are humic-like with a terrestrial, anthropogenic or marine origin, while two are protein-like with fluorescence spectra similar to those of tryptophan-like and tyrosine-like fluorophores. A correlation analysis was carried out for samples of one treatment plant between the maximum fluorescence intensities (Fmax) of the seven PARAFAC components and NOM fractions (humics, building blocks, neutrals, biopolymers and low molecular weight acids) of the same sample obtained using liquid chromatography with organic carbon detection (LC-OCD). There were significant correlations (p |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2010.09.005 |