Evolutionary Relationships in the Drosophila ananassae Species Cluster Based on Introns of Multiple Nuclear Loci

The Drosophila ananassae species cluster includes D. ananassae, D. pallidosa, D. parapallidosa, and the cryptic species “pallidosa-like”, “pallidosa-like Wau” and “papuensis-like” Some of the taxa are sympatric in the South Pacific, Papua New Guinea, and Southeast Asia, and gene flow between differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoological Science 2010-04, Vol.27 (4), p.303-312
Hauptverfasser: Sawamura, Kyoichi, Kamiya, Koichi, Sato, Hajime, Tomimura, Yoshihiko, Matsuda, Muneo, Oguma, Yuzuru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Drosophila ananassae species cluster includes D. ananassae, D. pallidosa, D. parapallidosa, and the cryptic species “pallidosa-like”, “pallidosa-like Wau” and “papuensis-like” Some of the taxa are sympatric in the South Pacific, Papua New Guinea, and Southeast Asia, and gene flow between different taxa has been suspected for a handful of genes. In the present analysis, we examined DNA sequences of introns in four loci: alpha actinin (Actn) on XL, white (w) on XR, CG7785 on 2L, and zinc ion transmembrane transporter 63C (ZnT63C) on 2R. Phylogenetic trees (neighbor-joining and haplotype network) were inconsistent among these loci. Some haplotypes shared between taxa were found for w, CG7785, and ZnT63C, suggesting recent gene flow. However, no haplotypes were shared, for example, between D. ananassae and D. pallidosa for CG7785, which is close to the proximal breakpoint of In(2L)D. This suggests that taxon-specific inversions prevent gene flow, as predicted by the chromosomal speciation hypothesis.
ISSN:0289-0003
DOI:10.2108/zsj.27.303