Investigation of nuclear electric powered interstellar precursor missions
Nuclear Electric Propulsion (NEP) is a technology conceptually proposed since the 1940s by E. Stuhlinger in Germany. The JIMO mission originally planned by NASA in the early 2000s produced at least two designs of ion thrusters fed by a 20–30kW nuclear powerplant. When compared to conventional (chemi...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2011-04, Vol.68 (7-8), p.1193-1200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear Electric Propulsion (NEP) is a technology conceptually proposed since the 1940s by E. Stuhlinger in Germany. The JIMO mission originally planned by NASA in the early 2000s produced at least two designs of ion thrusters fed by a 20–30kW nuclear powerplant. When compared to conventional (chemical) propulsion, the major advantage of NEP in the JIMO context was recognized to be the much higher Isp (lab-tested at up to 15,000s) and the capability for sustained power generation, up to 8–10 years when derated to Isp about 8000s.
The goal of this paper is to show that current or near term NEP technology enables missions far beyond our immediate interplanetary backyard. In fact, by extending the semi-analytical approach used by Stuhlinger, with reasonable ratios α≡power/mass of the propulsion system (i.e., 0.1– 0.4kW/kg), missions to the Kuiper Belt (40AU and beyond) and even the so-called FOCAL mission (at 540AU) become feasible with an attractive payload fraction and in times of order 10–15 years.
Further results regarding missions to Sedna’s perihelion/aphelion, and to Oort’s cloud will also be presented, showing the constraints affecting their feasibility and mass budget. |
---|---|
ISSN: | 0094-5765 1879-2030 |
DOI: | 10.1016/j.actaastro.2010.10.013 |