Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles
Nano zerovalent iron (nZVI) is an effective adsorbent for removing various organic and inorganic contaminants. In this study, nZVI particles were used to investigate the removal of Cd2+ in the concentration range of 25–450mgL−1. The effect of temperature on kinetics and equilibrium of cadmium sorpti...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-02, Vol.186 (1), p.458-465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nano zerovalent iron (nZVI) is an effective adsorbent for removing various organic and inorganic contaminants. In this study, nZVI particles were used to investigate the removal of Cd2+ in the concentration range of 25–450mgL−1. The effect of temperature on kinetics and equilibrium of cadmium sorption on nZVI particles was thoroughly examined. Consistent with an endothermic reaction, an increase in the temperature resulted in increasing cadmium adsorption rate. The adsorption kinetics well fitted using a pseudo second-order kinetic model. The calculated activation energy for adsorption was 54.8kJmol−1, indicating the adsorption process to be chemisorption. The intraparticle diffusion model described that the intraparticle diffusion was not the only rate-limiting step. The adsorption isotherm data could be well described by the Langmuir as well as Temkin equations. The maximum adsorption capacity of nZVI for Cd2+ was found to be 769.2mgg−1 at 297K. Thermodynamic parameters (i.e., change in the free energy (ΔGo), the enthalpy (ΔHo), and the entropy (ΔSo)) were also evaluated. The overall adsorption process was endothermic and spontaneous in nature. EDX analysis indicated the presence of cadmium ions on the nZVI surface. These results suggest that nZVI could be employed as an efficient adsorbent for the removal of cadmium from contaminated water sources. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2010.11.029 |