Transient Heterogeneity in an Aquifer Undergoing Bioremediation of Hydrocarbons

Localized, transient heterogeneity was studied in a sand aquifer undergoing benzene, toluene, ethylbenzene, and xylene bioremediation using a novel array of multilevel, in situ point velocity probes (PVPs). The experiment was conducted within a sheet-pile alleyway to maintain a constant average flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water 2011-03, Vol.49 (2), p.184-196
Hauptverfasser: Schillig, P.C, Devlin, J.F, Roberts, J.A, Tsoflias, G.P, McGlashan, M.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Localized, transient heterogeneity was studied in a sand aquifer undergoing benzene, toluene, ethylbenzene, and xylene bioremediation using a novel array of multilevel, in situ point velocity probes (PVPs). The experiment was conducted within a sheet-pile alleyway to maintain a constant average flow direction through time. The PVPs measured changes in groundwater velocity direction and magnitude at the centimeter scale, making them ideal to monitor small-scale changes in hydraulic conductivity (K). Velocities were shown to vary nonuniformly by up to a factor of 3 when a source of oxygen was established down-gradient of the petroleum spill. In spite of these local variations, the average groundwater velocity within the 7 m × 20 m sheet-piled test area only varied within ± 25%. The nonuniform nature of the velocity variations across the gate indicated that the changes were not due solely to seasonal hydraulic gradient fluctuations. At the conclusion of the experiment, microbial biomass levels in the aquifer sediments was approximately 1 order of magnitude higher in the oxygen-amended portion of the aquifer than at the edge of the plume or in locations up-gradient of the source. These data suggest that the transient velocities resulted, at least in part, from enhanced biological activity that caused transient heterogeneities in the porous medium.
ISSN:0017-467X
1745-6584
DOI:10.1111/j.1745-6584.2010.00682.x