Cholinesterase (ChE) inhibition in pumpkinseed ( Lepomis gibbosus) as environmental biomarker: ChE characterization and potential neurotoxic effects of xenobiotics
Inhibition of cholinesterases (ChEs) has been widely used as an environmental biomarker of exposure to organophosphates (OP) and carbamate (CB) pesticides. More recently, this biomarker has been suggested as a putative biomarker for exposure to detergents. The use of cholinesterase inhibition as eff...
Gespeichert in:
Veröffentlicht in: | Pesticide biochemistry and physiology 2011-02, Vol.99 (2), p.181-188 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inhibition of cholinesterases (ChEs) has been widely used as an environmental biomarker of exposure to organophosphates (OP) and carbamate (CB) pesticides. More recently, this biomarker has been suggested as a putative biomarker for exposure to detergents. The use of cholinesterase inhibition as effect criterion in Ecotoxicology requires the previous characterization of the specific enzymatic forms that may be present in different tissues or organs. Different ChEs isoforms may be present in the same tissue and may exhibit distinct sensitivities towards environmental contaminants. This work intended to characterize the soluble ChEs present in pumpkinseed sunfish (Lepomis gibbosus) total head and dorsal muscle homogenates, through the use of different substrates and selective inhibitors of cholinesterasic activity. Also, the in vitro effects of sodium dodecylsulphate (SDS – anionic detergent) and chlorfenvinphos (organophosphate pesticide) on the enzymatic activity of the mentioned species were investigated. In general terms, the predominant cholinesterasic form present in both tissues was acetylcholinesterase. Chlorfenvinphos was responsible for inhibitory effects on AChE activity, while SDS did not cause any significant effect. These results suggest that in environmental monitoring programs, L. gibbosus head and dorsal muscle AChE can be an adequate diagnostic tool for exposure to OP pesticides; this conclusion however is not applicable to detergent residues. We also discuss the usefulness of L. gibbosus as an alternative model system and valuable option for freshwater ecotoxicological monitoring programs. |
---|---|
ISSN: | 0048-3575 1095-9939 |
DOI: | 10.1016/j.pestbp.2010.12.002 |