Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters

In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-03, Vol.102 (5), p.4083-4090
Hauptverfasser: Ward, Alastair J., Hobbs, Philip J., Holliman, Peter J., Jones, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4090
container_issue 5
container_start_page 4083
container_title Bioresource technology
container_volume 102
creator Ward, Alastair J.
Hobbs, Philip J.
Holliman, Peter J.
Jones, David L.
description In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000mgL−1HCO3- produced the best calibration model (R2=0.76 and root mean square error of prediction (RMSEP) of 969mgL−1HCO3-). When validated with new data, the NIRS method produced the best model (R2=0.87 RMSEP=1230mgL−1HCO3-). The NIRS sensor correlated better with new data (R2=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.
doi_str_mv 10.1016/j.biortech.2010.12.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860375770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852410020092</els_id><sourcerecordid>848686153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-675138ecc0a0a7aae6bad0d5987604aab732660ca2db75b9f778d2902ed570cf3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhL5RcEFyyjO2N7dxAVWmRKnGAnq2JPWm9ZOPF9hbtkX-Oo92WGz3ZGn_z3tjPVXXGYMmAyY_rZe9DzGTvlhzmIl_CSj6rFkwr0fBOyefVAjoJjW756qR6ldIaAART_GV1whnnSup2Uf25uMdxh9mHqQ5DPRHG2k9DxEiuTluyOYZkw3Zf41QKYci_y1GdaEoh1hvKd8Gleih7R5nixk-PWjlkHGscf-LoJ5_3RbeIIMXQe1s7f0updKTX1YsBx0RvjutpdfPl4sf5VXP97fLr-efrxq60zI1ULROarAUEVIgke3Tg2k4rCSvEXgkuJVjkrldt3w1Kacc74ORaBXYQp9X7g-42hl-74m02PlkaR5wo7JLREoRqlYKnyTKQlqwVhfzwX5IppZiQjM2oPKC2PGiKNJht9BuMe8PAzJGatXmI1MyRGsZNibQ0nh09dv2G3GPbQ4YFeHcEMFkcS3aT9ekfJ7QCzXjh3h64AYPB21iYm-_FSQDrRLn3THw6EFRyuPcUTbKeJkvOx_ITjAv-qWn_AivoznM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777136113</pqid></control><display><type>article</type><title>Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ward, Alastair J. ; Hobbs, Philip J. ; Holliman, Peter J. ; Jones, David L.</creator><creatorcontrib>Ward, Alastair J. ; Hobbs, Philip J. ; Holliman, Peter J. ; Jones, David L.</creatorcontrib><description>In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000mgL−1HCO3- produced the best calibration model (R2=0.76 and root mean square error of prediction (RMSEP) of 969mgL−1HCO3-). When validated with new data, the NIRS method produced the best model (R2=0.87 RMSEP=1230mgL−1HCO3-). The NIRS sensor correlated better with new data (R2=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2010.12.046</identifier><identifier>PMID: 21227685</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Alkalinity ; Anaerobic digestion ; Bacteria, Anaerobic - metabolism ; Bicarbonates - analysis ; Biofuel production ; Biogas ; Biological and medical sciences ; Biological treatment of sewage sludges and wastes ; Biotechnology ; Computer programs ; Energy ; Environment and pollution ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Industrial applications and implications. Economical aspects ; Linear Models ; Mathematical models ; Methane - biosynthesis ; Models, Theoretical ; Monitoring ; NIRS ; Refuse Disposal - methods ; Sensors ; Software ; Software sensor ; Spectrophotometry, Infrared - methods</subject><ispartof>Bioresource technology, 2011-03, Vol.102 (5), p.4083-4090</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-675138ecc0a0a7aae6bad0d5987604aab732660ca2db75b9f778d2902ed570cf3</citedby><cites>FETCH-LOGICAL-c486t-675138ecc0a0a7aae6bad0d5987604aab732660ca2db75b9f778d2902ed570cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2010.12.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23870812$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21227685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Alastair J.</creatorcontrib><creatorcontrib>Hobbs, Philip J.</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Jones, David L.</creatorcontrib><title>Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000mgL−1HCO3- produced the best calibration model (R2=0.76 and root mean square error of prediction (RMSEP) of 969mgL−1HCO3-). When validated with new data, the NIRS method produced the best model (R2=0.87 RMSEP=1230mgL−1HCO3-). The NIRS sensor correlated better with new data (R2=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.</description><subject>Algorithms</subject><subject>Alkalinity</subject><subject>Anaerobic digestion</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Bicarbonates - analysis</subject><subject>Biofuel production</subject><subject>Biogas</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of sewage sludges and wastes</subject><subject>Biotechnology</subject><subject>Computer programs</subject><subject>Energy</subject><subject>Environment and pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Methane - biosynthesis</subject><subject>Models, Theoretical</subject><subject>Monitoring</subject><subject>NIRS</subject><subject>Refuse Disposal - methods</subject><subject>Sensors</subject><subject>Software</subject><subject>Software sensor</subject><subject>Spectrophotometry, Infrared - methods</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhL5RcEFyyjO2N7dxAVWmRKnGAnq2JPWm9ZOPF9hbtkX-Oo92WGz3ZGn_z3tjPVXXGYMmAyY_rZe9DzGTvlhzmIl_CSj6rFkwr0fBOyefVAjoJjW756qR6ldIaAART_GV1whnnSup2Uf25uMdxh9mHqQ5DPRHG2k9DxEiuTluyOYZkw3Zf41QKYci_y1GdaEoh1hvKd8Gleih7R5nixk-PWjlkHGscf-LoJ5_3RbeIIMXQe1s7f0updKTX1YsBx0RvjutpdfPl4sf5VXP97fLr-efrxq60zI1ULROarAUEVIgke3Tg2k4rCSvEXgkuJVjkrldt3w1Kacc74ORaBXYQp9X7g-42hl-74m02PlkaR5wo7JLREoRqlYKnyTKQlqwVhfzwX5IppZiQjM2oPKC2PGiKNJht9BuMe8PAzJGatXmI1MyRGsZNibQ0nh09dv2G3GPbQ4YFeHcEMFkcS3aT9ekfJ7QCzXjh3h64AYPB21iYm-_FSQDrRLn3THw6EFRyuPcUTbKeJkvOx_ITjAv-qWn_AivoznM</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ward, Alastair J.</creator><creator>Hobbs, Philip J.</creator><creator>Holliman, Peter J.</creator><creator>Jones, David L.</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20110301</creationdate><title>Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters</title><author>Ward, Alastair J. ; Hobbs, Philip J. ; Holliman, Peter J. ; Jones, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-675138ecc0a0a7aae6bad0d5987604aab732660ca2db75b9f778d2902ed570cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alkalinity</topic><topic>Anaerobic digestion</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Bicarbonates - analysis</topic><topic>Biofuel production</topic><topic>Biogas</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of sewage sludges and wastes</topic><topic>Biotechnology</topic><topic>Computer programs</topic><topic>Energy</topic><topic>Environment and pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Methane - biosynthesis</topic><topic>Models, Theoretical</topic><topic>Monitoring</topic><topic>NIRS</topic><topic>Refuse Disposal - methods</topic><topic>Sensors</topic><topic>Software</topic><topic>Software sensor</topic><topic>Spectrophotometry, Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Alastair J.</creatorcontrib><creatorcontrib>Hobbs, Philip J.</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Jones, David L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Alastair J.</au><au>Hobbs, Philip J.</au><au>Holliman, Peter J.</au><au>Jones, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>102</volume><issue>5</issue><spage>4083</spage><epage>4090</epage><pages>4083-4090</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000mgL−1HCO3- produced the best calibration model (R2=0.76 and root mean square error of prediction (RMSEP) of 969mgL−1HCO3-). When validated with new data, the NIRS method produced the best model (R2=0.87 RMSEP=1230mgL−1HCO3-). The NIRS sensor correlated better with new data (R2=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21227685</pmid><doi>10.1016/j.biortech.2010.12.046</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-03, Vol.102 (5), p.4083-4090
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_860375770
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Alkalinity
Anaerobic digestion
Bacteria, Anaerobic - metabolism
Bicarbonates - analysis
Biofuel production
Biogas
Biological and medical sciences
Biological treatment of sewage sludges and wastes
Biotechnology
Computer programs
Energy
Environment and pollution
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Industrial applications and implications. Economical aspects
Linear Models
Mathematical models
Methane - biosynthesis
Models, Theoretical
Monitoring
NIRS
Refuse Disposal - methods
Sensors
Software
Software sensor
Spectrophotometry, Infrared - methods
title Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20near%20infrared%20spectroscopy%20and%20software%20sensor%20methods%20for%20determination%20of%20total%20alkalinity%20in%20anaerobic%20digesters&rft.jtitle=Bioresource%20technology&rft.au=Ward,%20Alastair%20J.&rft.date=2011-03-01&rft.volume=102&rft.issue=5&rft.spage=4083&rft.epage=4090&rft.pages=4083-4090&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2010.12.046&rft_dat=%3Cproquest_cross%3E848686153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777136113&rft_id=info:pmid/21227685&rft_els_id=S0960852410020092&rfr_iscdi=true