Evaluation of near infrared spectroscopy and software sensor methods for determination of total alkalinity in anaerobic digesters

In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-03, Vol.102 (5), p.4083-4090
Hauptverfasser: Ward, Alastair J., Hobbs, Philip J., Holliman, Peter J., Jones, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study two approaches to predict the total alkalinity (expressed as mgL−1HCO3-) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000mgL−1HCO3- produced the best calibration model (R2=0.76 and root mean square error of prediction (RMSEP) of 969mgL−1HCO3-). When validated with new data, the NIRS method produced the best model (R2=0.87 RMSEP=1230mgL−1HCO3-). The NIRS sensor correlated better with new data (R2=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.12.046