A model for intradendritic computation of binocular disparity
Many complex cells in mammalian primary visual cortex are finely tuned to binocular disparity. In the prevailing model, several binocular simple cells drive each disparity-tuned complex cell. However, some cat complex cells receive direct LGN input, and binocular simple cells are rare in macaque. In...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2000-01, Vol.3 (1), p.54-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many complex cells in mammalian primary visual cortex are finely tuned to binocular disparity. In the prevailing model, several binocular simple cells drive each disparity-tuned complex cell. However, some cat complex cells receive direct LGN input, and binocular simple cells are rare in macaque. In our biophysically detailed compartmental model, active dendrites of a single neuron perform the multiple simple-cell-like subunit computations that underlie both orientation and disparity tuning. The responses of our detailed model could be predicted by a simple algebraic formula closely related to an 'energy' model. Adding inhibitory synapses led to sharper, more contrast-invariant tuning curves. Thus active dendrites could contribute to binocular-disparity tuning in complex cells. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/71125 |