Communication: Identification of the molecule-metal bonding geometries of molecular nanowires

Molecular nanowires in which a single molecule bonds chemically to two metal electrodes and forms a stable electrically conducting bridge between them have been studied intensively for more than a decade. However, the experimental determination of the bonding geometry between the molecule and electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-03, Vol.134 (12), p.121103-121103-4
Hauptverfasser: Demir, Firuz, Kirczenow, George
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular nanowires in which a single molecule bonds chemically to two metal electrodes and forms a stable electrically conducting bridge between them have been studied intensively for more than a decade. However, the experimental determination of the bonding geometry between the molecule and electrodes has remained elusive. Here we demonstrate by means of ab initio calculations that inelastic tunneling spectroscopy (IETS) can determine these geometries. We identify the bonding geometries at the gold-sulfur interfaces of propanedithiolate molecules bridging gold electrodes that give rise to the specific IETS signatures that were observed in recent experiments.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3571473