Angle-resolved scattering: an effective method for characterizing thin-film coatings
Light scattered from interface imperfections carries valuable information about its origins. For single surfaces, light-scattering techniques have become a powerful tool for the characterization of surface roughness. For thin-film coatings, however, solving the inverse scattering problem seemed to b...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2011-03, Vol.50 (9), p.C164-C171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light scattered from interface imperfections carries valuable information about its origins. For single surfaces, light-scattering techniques have become a powerful tool for the characterization of surface roughness. For thin-film coatings, however, solving the inverse scattering problem seemed to be impossible because of the large number of parameters involved. A simplified model is presented that introduces two parameters: Parameter δ describes optical thickness deviations from the perfect design, and parameter β describes the roughness evolution inside the coating according to a power law. The new method is used to investigate structural and alteration effects of HR coatings for 193 nm, as well as laser-induced degradation effects in Rugate filters for 355 nm. |
---|---|
ISSN: | 0003-6935 2155-3165 1539-4522 |
DOI: | 10.1364/AO.50.00C164 |