Dynamic Interactions between Orexin and Dynorphin May Delay Onset of Functional Orexin Effects: A Modeling Study

Orexin (also known as hypocretin) neurons play a key role in regulating sleep-wake behavior, but the links between orexin neuron electrophysiology and function have not been explored. Orexin neurons are wake-active, and spiking activity in orexin neurons may anticipate transitions to wakefulness by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological rhythms 2011-04, Vol.26 (2), p.171-181
Hauptverfasser: Williams, Katherine S., Diniz Behn, Cecilia G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orexin (also known as hypocretin) neurons play a key role in regulating sleep-wake behavior, but the links between orexin neuron electrophysiology and function have not been explored. Orexin neurons are wake-active, and spiking activity in orexin neurons may anticipate transitions to wakefulness by several seconds. However, it is suggested that while the orexin system is necessary to maintain sustained wake bouts, orexin has little effect on brief wake bouts. In vitro experiments investigating the actions of orexin and dynorphin, a colocalized neuropeptide, on orexin neurons indicate that the dynamics of desensitization to dynorphin may represent a mechanism for modulating local network activity and resolving the apparent discrepancy between the onset of firing in orexin neurons and the onset of functional orexin effects. To investigate the role of dynorphin on orexin neuron activity, a Hodgkin-Huxley—type model orexin neuron was developed in which baseline electrophysiology, orexin/dynorphin action, and dynorphin desensitization were closely tied to experimental data. In this model framework, model orexin neuron responses to orexin/dynorphin action were calibrated by simulating the physiologic effects of static orexin and dynorphin bath application on orexin neurons. Then behavior in a small network of model orexin neurons was simulated with pure orexin, pure dynorphin, or combined orexin and dynorphin coupling based on the mechanisms established in the static case. It was found that the dynamics of desensitization to dynorphin can mediate a clear shift from a network in which firing is suppressed by dynorphin-mediated inhibition to a network of neurons with high firing rates sustained by orexin-mediated excitation. The findings suggest that dynamic interactions between orexin and dynorphin at transitions from sleep to wake may delay onset of functional orexin effects.
ISSN:0748-7304
1552-4531
DOI:10.1177/0748730410395471