Colloidally Templated Two-Dimensional Conducting Polymer Arrays and SAMs: Binary Composition Patterning and Chemistry

A facile approach and strategy toward binary-composition, two-dimensional (2D) patterned surfaces of conducting polymer periodic arrays, together with thiol self-assembled monolayers (SAMs) is described. The method involved a Langmuir−Blodgett (LB)-like deposition of latex microsphere particles, ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2011-03, Vol.3 (3), p.817-827
Hauptverfasser: Pernites, Roderick B, Felipe, Mary Jane L, Foster, Edward L, Advincula, Rigoberto C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile approach and strategy toward binary-composition, two-dimensional (2D) patterned surfaces of conducting polymer periodic arrays, together with thiol self-assembled monolayers (SAMs) is described. The method involved a Langmuir−Blodgett (LB)-like deposition of latex microsphere particles, electropolymerization via cyclic voltammetric (CV) techniques, and self-assembly of an amphiphile. The LB-like technique enabled the monolayer deposition of different sizes of polystyrene (PS) particles in hexagonal packing arrangement on planar substrates. Combining the LB-like method with CV electropolymerization is advantageous because it provides deposition control of a polymer interconnected network, controlled composition ratio of polymer and SAMs, and control of 2D size and spacing of the spherical void pattern. Electrochemical-quartz crystal microbalance (EC-QCM) in situ monitoring of the film deposition quantified a constant and linear growth rate, with varying viscoelastic behavior of the conducting polymer adsorption on planar and PS-templated substrates. The dual-patterned surface provided a good imaging contrast as observed by atomic force microscopy (AFM). Complementary analyses such as X-ray photoelectron spectroscopy (XPS), attenuated total internal reflection infrared (ATR IR) spectroscopy, ultraviolet-visible (UV−vis) spectroscopy, and static contact angle measurements were used to characterize the formation of the patterned surface. The versatility of the method enables the potential for making various types of quantitative binary compositions and patterned surfaces using different combinations of conducting polymer or functional SAMs, which can be extended in the future to polymer brushes and layer-by-layer assembly of various materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/am101168g