OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice

Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2011-03, Vol.65 (6), p.907-921
Hauptverfasser: Seo, Ju-Seok, Joo, Joungsu, Kim, Min-Jeong, Kim, Yeon-Ki, Nahm, Baek Hie, Song, Sang Ik, Cheong, Jong-Joo, Lee, Jong Seob, Kim, Ju-Kon, Choi, Yang Do
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding. Transgenic over-expression of OsbHLH148 in rice confers plant tolerance to drought stress. Expression profiling followed by DNA microarray and RNA gel-blot analyses of transgenic versus wild-type rice identified genes that are up-regulated by OsbHLH148 over-expression. These include OsDREB and OsJAZ genes that are involved in stress responses and the jasmonate signaling pathway, respectively. OsJAZ1, a rice ZIM domain protein, interacted with OsbHLH148 in yeast two-hybrid and pull-down assays, but it interacted with the putative OsCOI1 only in the presence of coronatine. Furthermore, the OsJAZ1 protein was degraded by rice and Arabidopsis extracts in the presence of coronatine, and its degradation was inhibited by MG132, a 26S proteasome inhibitor, suggesting 26S proteasome-mediated degradation of OsJAZ1 via the SCFOsCOI¹ complex. The transcription level of OsJAZ1 increased upon exposure of rice to MeJA. These results show that OsJAZ1 could act as a transcriptional regulator of the OsbHLH148-related jasmonate signaling pathway leading to drought tolerance. Thus, our study suggests that OsbHLH148 acts on an initial response of jasmonate-regulated gene expression toward drought tolerance, constituting the OsbHLH148-OsJAZ-OsCOI1 signaling module in rice.
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2010.04477.x