Fast tunable coupler for superconducting qubits
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tunable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the interqubit coupling strength can be arbitrari...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2011-02, Vol.106 (6), p.060501-060501 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tunable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the interqubit coupling strength can be arbitrarily tuned over nanosecond time scales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over distances much larger than nearest-neighbor. Such design flexibility is likely to be useful for a scalable quantum computer. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.106.060501 |