Studies Leading to the Development of a Single-Electron Transfer (SET) Photochemical Strategy for Syntheses of Macrocyclic Polyethers, Polythioethers, and Polyamides
Organic photochemists began to recognize in the 1970sthat a new mechanistic pathway involving excited-state single-electron transfer (SET) could be used to drive unique photochemical reactions. Arnold’s seminal studies demonstrated that SET photochemical reactions proceed by way of ion radical inter...
Gespeichert in:
Veröffentlicht in: | Accounts of chemical research 2011-03, Vol.44 (3), p.204-215 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic photochemists began to recognize in the 1970sthat a new mechanistic pathway involving excited-state single-electron transfer (SET) could be used to drive unique photochemical reactions. Arnold’s seminal studies demonstrated that SET photochemical reactions proceed by way of ion radical intermediates, the properties of which govern the nature of the ensuing reaction pathways. Thus, in contrast to classical photochemical reactions, SET-promoted excited-state processes are controlled by the nature and rates of secondary reactions of intermediate ion radicals. In this Account, we discuss our work in harnessing SET pathways for photochemical synthesis, focusing on the successful production of macrocyclic polyethers, polythioethers, and polyamides. One major thrust of our studies in SET photochemistry has been to develop new, efficient reactions that can be used for the preparation of important natural and non-natural substances. Our efforts with α-silyl donor-tethered phthalimides and naphthalimides have led to the discovery of efficient photochemical processes in which excited-state SET is followed by regioselective formation of carbon-centered radicals. The radical formation takes place through nucleophile-assisted desilylation of intermediate α-silyl-substituted ether-, thioether-, amine-, and amide-centered cation radicals. Early laser flash photolysis studies demonstrated that the rates of methanol- and water-promoted bimolecular desilylations of cation radicals (derived from α-silyl electron donors) exceeded the rates of other cation radical α-fragmentation processes, such as α-deprotonation. In addition, mechanistic analyses of a variety of SET-promoted photocyclization reactions of α-silyl polydonor-linked phthalimides and naphthalimides showed that the chemical and quantum efficiencies of the processes are highly dependent on the lengths and types of the chains connecting the imide acceptor and α-silyl electron donor centers. We also observed that reaction efficiencies are controlled by the rates of desilylation at the α-silyl donor cation radical moieties in intermediate zwitterionic biradicals that are formed by either direct excited-state intramolecular SET or by SET between the donor sites in the intervening chains. It is important to note that knowledge about how these factors govern product yields, regiochemical selectivities, and quantum efficiencies was crucial for the design of synthetically useful photochemical reactions of linked pol |
---|---|
ISSN: | 0001-4842 1520-4898 |
DOI: | 10.1021/ar100125j |