Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth
Plants produce an array of proteins as a part of a global response to protect the cell metabolism when they grow under environmental conditions such as drought and salinity that generate reduced water potential. The synthesis of hydrophilic proteins is a major part of the response to water deficit c...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2011-05, Vol.168 (7), p.671-677 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plants produce an array of proteins as a part of a global response to protect the cell metabolism when they grow under environmental conditions such as drought and salinity that generate reduced water potential. The synthesis of hydrophilic proteins is a major part of the response to water deficit conditions. An increased expression of LEA proteins is thought to be one of the primary lines of defense to prevent the loss of intercellular water during adverse conditions. These LEA proteins are known to prevent aggregation of a wide range of other proteins. In this study we report the water stress induced protein aggregation and its abrogation followed by expression of group 1 and group 2 LEA proteins of water soluble proteomes in horsegram. Water stress caused an increased protein aggregation with magnitude and duration of stress in horsegram seedlings. Tissue-specific expression of LEA 1 protein decreased in the embryonic axis when compared to cotyledons in 24
h stressed seedlings. We found no cross reaction of LEA 1 with proteome of 48
h stressed embryonic axis and 72
h stressed root and shoot samples. However, LEA 2 antibodies were cross reacted with four polypeptides with different molecular mass in shoot tissue samples and found no reaction with root proteome as evidenced from immuno-blot analysis. The role of LEA proteins in relation to protein aggregation during water stressed conditions was discussed. |
---|---|
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1016/j.jplph.2010.09.007 |