Avalanche hazard mapping over large undocumented areas

An innovative methodology to perform avalanche hazard mapping over large undocumented areas is herewith presented and discussed. The method combines GIS tools, computational routines, and statistical analysis in order to provide a “semi-automatic” definition of areas potentially affected by avalanch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2011-02, Vol.56 (2), p.451-464
Hauptverfasser: Barbolini, M, Pagliardi, M, Ferro, F, Corradeghini, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An innovative methodology to perform avalanche hazard mapping over large undocumented areas is herewith presented and discussed. The method combines GIS tools, computational routines, and statistical analysis in order to provide a “semi-automatic” definition of areas potentially affected by avalanche release and motion. The method includes two main modules. The first module is used to define zones of potential avalanche release, based on the consolidated relations on slope, morphology, and vegetation. For each of the identified zones of potential release, a second module, named Avalanche Flow and Run-out Algorithm (AFRA), provides an automatic definition of the areas potentially affected by avalanche motion and run-out. The definition is generated by a specifically implemented “flow-routing algorithm” which allows for the determination of flow behaviour in the track and in the run-out zone. In order to estimate the avalanche outline in the run-out zone, AFRA uses a “run-out cone”, which is a 3D projection of the angle of reach α. The α-value is evaluated by statistical analysis of historical data regarding extreme avalanches. Pre- and post-processing of the AFRA input/output data is done in an open source GIS environment (GRASS GIS). The method requires only a digital terrain model and an indication of the areas covered by forest as input parameters. The procedure, which allows rapid mapping of large areas, does not in principle require any site-specific historical information. Furthermore, it has proven to be effective in all cases where a preliminary cost-efficient analysis of the territories potentially affected by snow avalanche was needed.
ISSN:1573-0840
0921-030X
1573-0840
DOI:10.1007/s11069-009-9434-8