Acidification reversal in low mountain range streams of Germany

This study evaluates the acidification status and trends in streams of forested mountain ranges in Germany in consequence of reduced anthropogenic deposition since the mid 1980s. The analysis is based on water quality data for 86 long-term monitored streams in the Ore Mountains, the Bavarian Forest,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2011-03, Vol.174 (1-4), p.65-89
Hauptverfasser: Sucker, Carina, Wilpert, Klaus von, Puhlmann, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluates the acidification status and trends in streams of forested mountain ranges in Germany in consequence of reduced anthropogenic deposition since the mid 1980s. The analysis is based on water quality data for 86 long-term monitored streams in the Ore Mountains, the Bavarian Forest, the Fichtelgebirge, the Harz Mountains, the Spessart, the Black Forest, the Thuringian Forest, and the Rheinisches Schiefergebirge of Germany and the Vosges of France. Within the observation period, which starts for the individual streams between 1980 and 2001 and ends between 1990 and 2009, trends in chemical water quality were calculated with the Seasonal Mann Kendall Test. About 87% of the streams show significant (p < 0.05) negative trends in sulfate. The general reduction in acid deposition resulted in increased pH values (significant for 66% of the streams) and subsequently decreased base cation concentrations in the stream water (for calcium significant in 58% and magnesium 49% of the streams). Reaction products of acidification such as aluminum (significant for 50%) or manganese (significant for 69%) also decreased. Nitrate (52% with significant decrease) and chloride (38% with significant increase) have less pronounced trends and more variable spatial patterns. For the quotient of acidification, which is the ratio of the sum of base cations and the sum of acid anions, no clear trend is observed: in 44% of the monitored streams values significantly decreased and in 23% values significantly increased. A notable observation is the increasing DOC concentration, which is significant for 55% of the observed streams.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-010-1758-z