Controlling the dual cascade of two-dimensional turbulence
The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced homogeneous isotropic two-dimensional turbulence predicts the existence of two inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range with an energy spectrum sca...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-02, Vol.668, p.202-222 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced homogeneous isotropic two-dimensional turbulence predicts the existence of two inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range with an energy spectrum scaling of k−3. However, unlike the analogous Kolmogorov theory for three-dimensional turbulence, the scaling of the enstrophy range in the two-dimensional turbulence seems to be Reynolds-number-dependent: numerical simulations have shown that as Reynolds number tends to infinity, the enstrophy range of the energy spectrum converges to the KLB prediction, i.e. E ~ k−3. The present paper uses a novel optimal control approach to find a forcing that does produce the KLB scaling of the energy spectrum in a moderate Reynolds number flow. We show that the time–space structure of the forcing can significantly alter the scaling of the energy spectrum over inertial ranges. A careful analysis of the optimal forcing suggests that it is unlikely to be realized in nature, or by a simple numerical model. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112010004635 |