Controlling the dual cascade of two-dimensional turbulence

The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced homogeneous isotropic two-dimensional turbulence predicts the existence of two inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range with an energy spectrum sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2011-02, Vol.668, p.202-222
Hauptverfasser: FARAZMAND, M. M., KEVLAHAN, N. K.-R., PROTAS, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced homogeneous isotropic two-dimensional turbulence predicts the existence of two inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range with an energy spectrum scaling of k−3. However, unlike the analogous Kolmogorov theory for three-dimensional turbulence, the scaling of the enstrophy range in the two-dimensional turbulence seems to be Reynolds-number-dependent: numerical simulations have shown that as Reynolds number tends to infinity, the enstrophy range of the energy spectrum converges to the KLB prediction, i.e. E ~ k−3. The present paper uses a novel optimal control approach to find a forcing that does produce the KLB scaling of the energy spectrum in a moderate Reynolds number flow. We show that the time–space structure of the forcing can significantly alter the scaling of the energy spectrum over inertial ranges. A careful analysis of the optimal forcing suggests that it is unlikely to be realized in nature, or by a simple numerical model.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112010004635