Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption
State of the art ZnO/CdS/Cu(In,Ga)Se 2 (CIGS) solar cells use bandgap grading, requiring special tools for the analysis of the experimentally obtained characteristic curves. We develop an analytical model for the photon flux and internal quantum efficiency in double-graded bandgap solar cells, consi...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2011-03, Vol.95 (3), p.821-828 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | State of the art ZnO/CdS/Cu(In,Ga)Se
2 (CIGS) solar cells use bandgap grading, requiring special tools for the analysis of the experimentally obtained characteristic curves. We develop an analytical model for the photon flux and internal quantum efficiency in double-graded bandgap solar cells, considering the effects of sub-bandgap absorption and grading-dependent carrier collection properties. The short-circuit photocurrent density is calculated as a function of carrier diffusion length and front/back bandgaps, establishing optimum design criteria under solar operation. Even for a diffusion length of only 0.5
μm in a 3-μm-thick absorber, and no contribution from the CdS layer, an optimum back bandgap of 1.35
eV is found, yielding short-circuit current densities of 36.0 (33.5)
mA
cm
−2 for a front bandgap of 1.05 (1.68)
eV. Furthermore, simplifications to the model for specific energy ranges allow to extract the Urbach Energy
E
U
and the minimum bandgap
E
g,min
in the grading profile from experimental
IQE curves. Finally, our model fits
IQE measurements of 18% efficient CIGS solar cells, yielding values of
E
U
between 31 and 41
meV, minimum bandgaps
E
g,min
between 1.10 and 1.16
eV, and diffusion lengths close to 0.5
μm. |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2010.10.028 |