Hyaluronan fragments contribute to the ozone-primed immune response to lipopolysaccharide

Hyaluronan is a high-molecular mass component of pulmonary extracelluar matrix, and lung injury can generate a low-molecular mass hyaluronan (HA) fragment that functions as endogenous ligand to cell surface receptors CD44 and TLR4. This leads to activation of intracellular NF-κB signaling and proinf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2010-12, Vol.185 (11), p.6891-6898
Hauptverfasser: Li, Zhuowei, Potts, Erin N, Piantadosi, Claude A, Foster, W Michael, Hollingsworth, John W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyaluronan is a high-molecular mass component of pulmonary extracelluar matrix, and lung injury can generate a low-molecular mass hyaluronan (HA) fragment that functions as endogenous ligand to cell surface receptors CD44 and TLR4. This leads to activation of intracellular NF-κB signaling and proinflammatory cytokine production. Based on previous information that ozone exposure causes increased HA in bronchial alveolar lavage fluid and ozone pre-exposure primes immune response to inhaled LPS, we hypothesized that HA production during ozone exposure augments the inflammatory response to LPS. We demonstrate that acute ozone exposure at 1 part per million for 3 h primes the immune response to low-dose aerosolized LPS in C57BL/6J mice, resulting in increased neutrophil recruitment into the airspaces, increased levels of protein and proinflammatory cytokines in the bronchoalveolar lavage fluid, and increased airway hyperresponsiveness. Intratracheal instillation of endotoxin-free HA (25 μg) enhances the biological response to inhaled LPS in a manner similar to ozone pre-exposure. In vitro studies using bone marrow-derived macrophages indicate that HA enhances LPS responses measured by TNF-α production, while immunofluorescence staining of murine alveolar macrophages demonstrates that HA induces TLR4 peripheralization and lipid raft colocalization. Collectively, our observations support that ozone primes macrophage responsiveness to low-dose LPS, in part, due to HA-induced TLR4 peripheralization in lung macrophages.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1000283